Management and Treatment
of High Triglycerides

Stay Informed Download the Genetic Testing for FCS flyer and CORE Clinical Trials Fact Sheet

Management: An Overview of
Guidelines and Consensus Pathways

According to the American Heart Association, the American College of Cardiology, and multisociety guidelines, it is reasonable to reduce triglyceride levels in adults with TG ≥ 5.7 mmol/L (500 mg/dL) to reduce the risk of acute pancreatitis. Reducing TG levels is especially important in adults with TG >10.0 mmol/L (880 mg/dL) due to increased risk for acute pancreatitis at this level.23

For adults, current American College of Cardiology and American Association of Clinical Endocrinologists/ American College of Endocrinology Expert Consensus statements recommends lowering of fasting TG levels to < 1.7 mmol/L (150 mg/dL) to reduce ASCVD risk.2, 31

Initial Factors to Consider for Controlling TG Levels in Different Patient Subgroups

2021 American College of Cardiology
Expert Decision Pathway - modified from Virani et al.2

Initial Factors to Consider for Controlling TG Levels in Different Patient Subgroups Initial Factors to Consider for Controlling TG Levels in Different Patient Subgroups

Lifestyle and
Pharmacologic Treatments

The American College of Cardiology (ACC) and the National Lipid Association (NLA) have prepared screening questions to help clinicians assess the effects of lifestyle on triglycerides.2

  • How often do you consume sugar-sweetened beverages (soft drinks, fruit drinks, sweet tea, or sports/energy drinks)?
  • Do you consume sweets (pastries, desserts, or candy)? If so, how much and how often?
  • Do you drink alcoholic beverages (beer, wine, or spirits)? If so, how much and how often?
  • How often do you consume foods that are deep fried or high in saturated fats (ie, butter, coconut and other tropical oils, full-fat dairy products, or fatty red meat) as well as pizza?
  • Have you gained weight in the past year? If so, how much weight have you gained?
  • What do you do for physical activity? How often?

Average effects of lifestyle
interventions4,9

Lifestyle interventions

illustration
Intervention TG lowering
Alcohol abstinence Variable Can lower TGs by as much as 80% in people with elevated TG and excess alcohol intake
Weight loss Approximately 8 mg/dL (0.1 mmol/L) per kg weight loss
Dietary modification 0.18 mmol/L (15.7 mg/dL) reduction with plant-based diet enriched in protein and unsaturated fat
Aerobic exercise 10-20%
ω3-polyunsaturaed fatty acids (eg, fish, flaxseed) 10-50%

Pharmacologic interventions

illustration
Statins Dose-dependent; 22-45% reduction in people with baseline TG > 250mg/dL
Fibrates 30-50%
Niacin up to 30%

Nutrition
Management for
People with Extreme
HTG

For people with extreme HTG (monogenic or multifactorial), strict management of diet is critical to minimize the risk of pancreatitis and other complications.12

For more information, see reference 34.

Sign up

Share your contact information below and receive a free informational flyer about hypertriglyceridemia and genetics - in addition to informational fact sheets about the CORE and CORE2 clinical trials.

Intended for US healthcare professionals only.

    *Required fields

    By clicking this box, I agree that Ionis may use the information I’m submitting to email me with information about hypertriglyceridemia. I understand that all personal information I've submitted will be kept confidential in accordance with Ionis's privacy policy, and I agree to the terms of use.

    SHOW REFERENCES

    1. Ginsberg HN, Packard CJ, Chapman MJ, et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J. 2021;42(47):4791-4806.

    2. Virani SS, Morris PB, Agarwala A, et al. 2021 ACC Expert Consensus Decision Pathway on the Management of ASCVD Risk Reduction in Patients With Persistent Hypertriglyceridemia: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021.

    3. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384(9943):626-635.

    4. Laufs U, Parhofer KG, Ginsberg HN, et al. Clinical review on triglycerides. Eur Heart J. 2020;41(1):99-109c.

    5. Packard CJ. Remnants, LDL, and the Quantification of Lipoprotein-Associated Risk in Atherosclerotic Cardiovascular Disease. Curr Atheroscler Rep. 2022;24(1534-6242 (Electronic)):133-142.

    6. Wang Y. Higher fasting triglyceride predicts higher risks of diabetes mortality in US adults. Lipids Health Dis. 2021;20(1):181.

    7. Paquette M, Bernard S. The Evolving Story of Multifactorial Chylomicronemia Syndrome. Front Cardiovasc Med. 2022;9:886266.

    8. Christian JB, Bourgeois N, Snipes R, et al. Prevalence of severe (500 to 2,000 mg/dl) hypertriglyceridemia in United States adults. Am J Cardiol. 2011;107(6):891-897.

    9. Sandesara PB, Virani SS, Fazio S, et al. The Forgotten Lipids: Triglycerides, Remnant Cholesterol, and Atherosclerotic Cardiovascular Disease Risk. Endocr Rev. 2019;40(2):537-557.

    10. Pedersen SB, Langsted A, Nordestgaard BG. Nonfasting Mild-to-Moderate Hypertriglyceridemia and Risk of Acute Pancreatitis. JAMA Intern Med. 2016;176(12):1834-1842.

    11. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111-188.

    12. Chyzhyk V, Brown AS. Familial chylomicronemia syndrome: A rare but devastating autosomal recessive disorder characterized by refractory hypertriglyceridemia and recurrent pancreatitis. Trends Cardiovasc Med. 2020;30(2):80-85.

    13. Santos-Baez LS, Ginsberg HN. Hypertriglyceridemia-Causes, Significance, and Approaches to Therapy. Front Endocrinol (Lausanne). 2020;11:616.

    14. Moulin P, Dufour R, Averna M, et al. Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): Expert panel recommendations and proposal of an "FCS score". Atherosclerosis. 2018;275:265-272.

    15. Hegele RA, Ginsberg HN, Chapman MJ, et al. The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol. 2014;2(8):655-666.

    16. Brahm AJ, Hegele RA. Chylomicronaemia--current diagnosis and future therapies. Nat Rev Endocrinol. 2015;11(6):352-362.

    17. Borén J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2020;41(24):2313-2330.

    18. Semenkovich CF. Disorder of Lipid Metabolism. In: Goldman LaS, A.I., editor. Goldman-Cecil Medicine, 25th Edition. Philadelphia, PA: Elsevier Saunders; 2016. p. 1389-1397.

    19. Nordestgaard BG. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New Insights From Epidemiology, Genetics, and Biology. Circ Res. 2016;118(4):547-563.

    20. Nordestgaard BG, Benn M, Schnohr P, et al. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. Jama. 2007;298(3):299-308.

    21. Stroes E, Moulin P, Parhofer KG, et al. Diagnostic algorithm for familial chylomicronemia syndrome. Atheroscler Suppl. 2017;23:1-7.

    22. Davidson M, Stevenson M, Hsieh A, et al. The burden of familial chylomicronemia syndrome: Results from the global IN-FOCUS study. J Clin Lipidol. 2018;12(4):898-907.e892.

    23. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;73(24):e285-e350.

    24. Belhassen M, Van Ganse E, Nolin M, et al. 10-Year Comparative Follow-up of Familial versus Multifactorial Chylomicronemia Syndromes. J Clin Endocrinol Metab. 2021;106(3):e1332-e1342.

    25. Nawaz H, Koutroumpakis E, Easler J, et al. Elevated serum triglycerides are independently associated with persistent organ failure in acute pancreatitis. Am J Gastroenterol. 2015;110(10):1497-1503.

    26. Bedogni G, Bellentani S, Miglioli L, et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6:33.

    27. Koehler EM, Schouten JN, Hansen BE, et al. External validation of the fatty liver index for identifying nonalcoholic fatty liver disease in a population-based study. Clin Gastroenterol Hepatol. 2013;11(9):1201-1204.

    28. Nivukoski U, Niemelä M, Bloigu A, et al. Combined effects of lifestyle risk factors on fatty liver index. BMC Gastroenterol. 2020;20(1):109.

    29. Maltais M, Brisson D, Gaudet D. Non-Alcoholic Fatty Liver in Patients with Chylomicronemia. J Clin Med. 2021;10(4).

    30. O'Dea LSL, MacDougall J, Alexander VJ, et al. Differentiating Familial Chylomicronemia Syndrome From Multifactorial Severe Hypertriglyceridemia by Clinical Profiles. J Endocr Soc. 2019;3(12):2397-2410.

    31. Handelsman Y, Jellinger PS, Guerin CK, Bloomgarden ZT, Brinton EA, Budoff MJ, Davidson MH, Einhorn D, Fazio S, Fonseca VA, Garber AJ, Grunberger G, Krauss RM, Mechanick JI, Rosenblit PD, Smith DA, Wyne KL. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Management of Dyslipidemia and Prevention of Cardiovascular Disease Algorithm - 2020 Executive Summary. Endocr Pract. 2020;26(10):1196-224.

    32. Hopkins PN, Wu LL, Hunt SC, Brinton EA. Plasma triglycerides and type III hyperlipidemia are independently associated with premature familial coronary artery disease. J Am Coll Cardiol. 2005;45(7):1003-12.

    33. Toth PP, Grabner M, Ramey N, Higuchi K. Clinical and economic outcomes in a real-world population of patients with elevated triglyceride levels. Atherosclerosis. 2014;237(2):790-7.

    34. Williams L, Rhodes KS, Karmally W, Welstead LA, Alexander L, Sutton L. Familial chylomicronemia syndrome: Bringing to life dietary recommendations throughout the life span. J Clin Lipidol. 2018;12(4):908-19.

    35. ClinicalTrials.gov A Study of Olezarsen (ISIS 678354) in Participants With Hypertriglyceridemia and Atherosclerotic Cardiovascular Disease, or With Severe Hypertriglyceridemia. ClinicalTrials.gov identifier: NCT05610280. Accessed March 13, 2023. Updated March 1, 2023. https://clinicaltrials.gov/ct2/show/NCT05610280